

Design and Analysis of MEMS Gyroscopes

Diego Emilio Serrano

Qualtré Georgia Institute of Technology

What is a Gyroscope?

• Sensor that measures the angle or rate of rotation

Applications of MEMS Gyroscopes

Evolution of MEMS Gyroscopes

STMicroelectronics 3-Axis Gyroscope (Consumer)

Source: Yole Développement, "STMicro L3G3250A Reverse costing", 2012

Invensense 3-Axis Gyroscope (Commercial)

Product	IDG-1000	IDG-600	IXZ-600	MPU-3000	
MP Date	2006	2008	2009	2010	
Gyro Axes	X/Y	X/Y	X/Z	X/Y/Z	
Package	6x6x1.4 QFN	5x4x1.2 QFN	5x4x1.2 QFN	4x4x0.9 QFN	mm³
Die Size	12.2	7.4	7.4	6.7	mm²
MEMS Area	4.1	2.8	2.8	2.9	mm²
CMOS technology	0.5um	0.35um	0.35um	0.18um	
Output	Analog	Analog	Analog	Digital	

(2012)

Source: Seeger, et. al. "Development of High-Performance, High-Volume Consumer MEMS Gyroscopes." *Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island.* 2010.

Performance in Gyroscopes (Consumer)

4

- Current applications do not demand low-noise performance
- Pedestrian and in-doors navigation \rightarrow LOW NOISE IS A MUST!

Operation Principles - The Coriolis Effect

• Example: The Foucault Pendulum

- For an extraterrestrial observer: pendulum swings back and forth
- For a terrestrial observer: Trajectory of swing changes by \vec{a}_{cor}

IEEE SENSORS 2013

Micromechanical Gyroscopes

• Example: The Tuning Fork Gyroscope (TFG)

Equations of motion of an ideal gyroscope:

Modes of Operation

Rotation-Rate Gyros

• Output proportional to Ω

- Mode 1 driven into oscillation
- Mode 2 used to detect rotation

Whole-Angle Mode Gyros

• Output proportional to θ

- Free-vibrating structure
- Standing-wave precesses

Vibratory Rotation-Rate Gyroscopes

- Two second-order systems
 - Drive (excited into oscillation)
 - Sense (response proportional to rotation-rate Ω)

Driving the Gyroscope

• To generate v_{drv} , one mode is driven (usually into oscillation)

• Frequency-domain:
$$\frac{X(j\omega)}{F_{elec}(j\omega)} = \frac{1}{m} \frac{1}{-\omega^2 + \frac{\omega_{0drv}}{Q_{drv}} j\omega + \omega_{0drv}^2}$$

• At resonance ($\omega = \omega_{0drv}$): $\left| \frac{X(j\omega)}{F_{elecx}(j\omega)} \right| = \frac{Q_{drv}}{m\omega_{0drv}^2}$ and $\angle \frac{X(j\omega)}{F_{elecx}(j\omega)} = -90^\circ$

Georgialnstitute

IEEE SENSORS 2013

Electrostatic Transducers

Parallel-Plate Transducer

GATech/Qualtré's HARPSS parallel-plate gaps

- ✓ High electromechanical coupling
- ✓ Small and easy to implement
- \times Non-linear transfer function

$$\frac{dC}{dx} = \frac{\varepsilon \cdot w \cdot t}{\left(g_0 - x\right)^2} \approx \frac{\varepsilon \cdot w \cdot t}{g_0^2}$$
Georgialmetitute Qualtré

Comb-Drive Actuation

Micralyne DRIE etched comb-drive structures

- Linear actuation
- ✓ Allows large displacements
- × Low coupling coefficient

$$\frac{dC}{dx} = \frac{\varepsilon \cdot 2n \cdot t}{g_0}$$

IEEE SENSORS 2013

Detecting Rotation Rate

• With v_{drv} established, the sense mode responds in presence of Ω

• Frequency-domain:
$$\frac{Y(j\omega)}{X(j\omega)}\Big|_{\omega=\omega_{0drv}} = 2\lambda\Omega \frac{j\omega_{0drv}}{-\omega_{0drv}^2 + \frac{\omega_{0sns}}{Q_{sns}}j\omega_{0drv} + \omega_{0sns}^2}$$

• But where is ω_{0sns} with respect to ω_{0drv} ?

Georgialnstitute

Rate Gyros - Modes of Operation

- Mode-Split: Drive and sense frequencies are different
- Mode-Matched: Drive and sense frequencies are identical

Mode-Split vs. Mode-Matched Gyros

Mode-Split Gyros

• Typically of Tuning-Fork kind

J. Marek, IEEE, ISSCC 2010

Georgia Institute of Technology

- Modes from different mechanisms
- Large BW (accelerometer response)
- Scale factor $\propto 1/\omega_{sns}^2$
 - Large mass (bigger size)

Jaltré

Low spring constant (poor reliability)

Mode-Matched Gyros

Typically axisymmetric

- Inherent degenerate modes
- BW proportional to f₀/Q
- Scale factor ∝ Q
 - 10,000 to 1'000,000 larger!!

Mode-Split Rate Gyroscopes

• Typically TFGs \rightarrow Low resonance frequency (1 – 30 kHz)

SensorDynamics, 3-axis gyroscope Source: http://www.i-micronews.com/news/Generation-MEMSgyroscopes-inertial-combo-sensors-SensorDyn,6375.html

- To compensate for loss of Q-amplification:
 - Larger mass
 - Lower stiffness
 - Interdigitated and comb capacitors
- For large x_{drv}, high-Q still needed on drive
- In kHz range, high-vacuum required for high Q \rightarrow <u>GETTERS</u>

Bulk-Acoustic Wave (BAW) Gyroscopes

- Axisymmetric structure \rightarrow Inherently mode-matched
- Q = 50,000 to 200,000 in 1 to 10 Torr \rightarrow High sensitivity, low noise
- High f_0 (MHz range) \rightarrow Large BW, dynamic range, shock resistance

Operation BAW Rate Gyroscopes

Implementation of BAW Gyroscopes

Performance of Capacitive BAW Gyros

Motional Impedance

$$R_{m} = \frac{2\pi \cdot M_{eff} \cdot g_{0}^{4} \cdot f_{res}}{\left(\varepsilon_{0} \cdot A_{elec} \cdot V_{P}\right)^{2} \cdot Q} \quad [\Omega]$$

Scale Factor

$$SF = \frac{2\pi \cdot \lambda \cdot \varepsilon_0 \cdot A_{elec} \cdot V_P \cdot Q}{180 \cdot \alpha \cdot g_0} \quad [A/(^{\circ}/s)]$$

$$Mechanical Noise$$
$$MNE\Omega = \frac{180 \cdot \alpha}{\pi \cdot \lambda \cdot g_0} \sqrt{\frac{k_B \cdot T}{\pi \cdot M_{eff} \cdot f_{res} \cdot Q}} [(^{\circ}/s)\sqrt{Hz}]$$

Bandwidth
$$BW = \frac{f_{res}}{2Q}$$
 [Hz]

Georgia Institute

• Lower is better!

- − High Q (~50,000 @ 1 − 10 Torr)
- Ultra-small capacitive nano-gaps
- Higher is better!
 - Independent of frequency!!

- Lower is better!
 - High f_{res} & high Q compensate for smaller displacements
- Higher is better!
 - High f_{res} compensates for high Q

IEEE SENSORS 2013

Pitch and Roll Annulus Gyroscopes

- High frequency operation (0.5 ~ 1.5 MHz)
- Process compatible with HARPSS[™] → air nano-gaps

Annulus Gyroscopes - Response

Measurements Pk-Pk(1):

Freq(1):

35mV 34mV

Small frequency split (further compensated with electronics)

Rate Response

Georgi

Technon

W. K. Sung et al, TRANSDUCERS, 2011

Multi-Degree-of-Freedom Integration

Error Sources in Mode-Matched Gyros

• Mode 1:

 $m_{11}\ddot{q}_{1}(t) + d_{11}\dot{q}_{1}(t) + k_{11}q_{1}(t) = -2\lambda m_{22}\dot{q}_{2}(t)\Omega(t)$ Coriolis coupling Mode 2: $m_{22}\ddot{q}_{2}(t) + d_{22}\dot{q}_{2}(t) + k_{22}q_{2}(t) = 2\lambda m_{11}\dot{q}_{1}(t)\Omega(t)$

• Ideal gyroscope:
$$\omega_{0_1} = \sqrt{\frac{k_{11}}{m_{11}}} = \omega_{02} = \sqrt{\frac{k_{22}}{m_{22}}}$$
 $\Delta \omega_0 = 0$

• Anisoelasticity: $k_{22} \neq k_{11}$

• Anisoinertia: $m_{22} \neq m_{11}$

$$\omega_{0_1} \neq \omega_{0_2}$$

Compensating for Frequency-Split

Electrostatic Spring Softening

Mode-to-Mode Coupling

Ideal gyroscope with uncoupled modes

Imperfect gyroscope with <u>coupled</u> modes

Jualtré

Stiffness Coupling

Mode 1 displacement generates force that couples to Mode 2

If
$$k_{11} = k_{22}$$
 (i.e. $\Delta \omega$ close to 0):
 $\angle \frac{q_{2Q}}{q_1} \approx -90^{\circ}$ Quadrature

• Electrostatic mode-decoupling:

ualtré

Georgia Institute of Technology

• @ $V_Q = V_{QA} \rightarrow q_{2Q} = 0$ (modes decoupled)

Damping Coupling

• Mode 1 velocity generates force that couples to Mode 2

$$\ddot{q}_{2I}(t) + \frac{\omega_{0_2}}{Q_2} \dot{q}_{2I}(t) + \frac{b_{21}}{m} \dot{q}_1(t) + \omega_{0_2}^2 q_{2I}(t) = 0$$

• For a mode-matched gyroscope:

$$\frac{q_{2I}(\omega)}{q_{1}(\omega)}\Big|_{\omega=\omega_{0_{1}}=\omega_{0_{2}}} = -\frac{b_{21}Q_{2}}{m\omega_{0_{1}}}\angle 0^{0}$$

• Comparing with Coriolis coupling due to rotation rate

$$\ddot{q}_{2c}(t) + \frac{\omega_{0_2}}{Q_2} \dot{q}_{2c}(t) + \omega_{0_2}^2 q_{2c}(t) = 2\lambda \Omega(t) \dot{q}_1(t)$$

• For a mode-matched gyroscope:

$$\frac{q_{2c}(\omega)}{q_1(\omega)}\bigg|_{\omega=\omega_{0_1}=\omega_{0_2}} = \frac{2\lambda Q_2}{\omega_{0_1}}\Omega(\omega')\angle 0^0$$

 q_{2l} is indistinguishable from q_{2c}

Loss Mechanisms in Resonant Gyros

• Q in resonant gyroscopes is a combination of different effects:

Piezoelectric Square Gyroscope

- Capacitive transducers, well established in sensors, but:
 - Low electromechanical coupling coefficients
 - Non-linear (Parallel plate)
- Piezoelectric transduction \rightarrow widely used in resonators

Whole-Angle Mode Gyroscopes

- Also known as rate-integrating gyroscopes (RIG)
- Strap-down navigation utilizes angle and displacement information

- Integration step introduces error and accumulates drift
- Whole-angle mode \rightarrow output proportional to angle, not rate

Operation of Whole-Angle Mode Gyros

- Based on relative measurement with respect to a standing-wave
- Similar to the Foucault Pendulum example

- Anti-nodes precess with respect to reference frame
- The angular gain factor \rightarrow very stable parameter

Georgialnstitute Qualtré

But Why Precession?

• First discovered by G.H. Bryan (circa 1890)

- Nodes → no radial component (i.e. no Coriolis effect)
- Antinodes → Maximum radial displacement (i.e. max Coriolis)
- Thus, antinodes have to rotate much faster than nodes

Georgialnstitute

Detection of Rotation Angle

• Breaking down the vibration into orthogonal components:

 $\frac{q_2}{2} = \tan 2\theta$

 q_1

- Two sets of differential electrodes
 - Cosine electrodes: $q_1^* \cos(\omega_0 t)$
 - Sine electrodes $q_2^* \sin(\omega_0 t)$
- q_1 and q_2 obtained by demodulation
- arctan of their ratio $\rightarrow \theta$

MEMS Whole-Angle Mode Gyros

Limitations of MEMS Whole-Angle Gyros

- To operate, pattern of vibration should not be perturbed
- But, amplitude of vibration decays with time → limited Q

Summary

- Improvements in resolution still required for personal navigation
- Shift in design methodology is imminent to achieve performance
- Vibration and shock immunity are more important than thought
- High-frequency BAW gyros:
 - Rugged structures with clear advantages over TFG designs
 - Easy to integrate into monolithic multi-DOF units
- Whole-angle MEMS gyros \rightarrow plenty of room for improvement

References

[1] N. Yazdi, F. Ayazi, and K. Najafi, "Micromachined inertial sensors," Proc. IEEE, vol. 86, no. 8, pp. 1640–1659, Aug. 1998.
[2] Bernstein, Jon, et al. "A micromachined comb-drive tuning fork rate gyroscope." *Micro Electro Mechanical Systems,* 1993, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE, 1993.

[3] Larsen, Michael, and M. Bulatowicz. "Nuclear Magnetic Resonance Gyroscope: For DARPA's micro-technology for positioning, navigation and timing program." *Frequency Control Symposium (FCS), 2012 IEEE International*. IEEE, 2012.
 [4] STMicro L3G3250A Reverse costing, Yole Développement, 2012.

[5] Seeger, Joe, Martin Lim, and Steve Nasiri. "Development of High-Performance, High-Volume Consumer MEMS Gyroscopes." *Technical Digest Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island*. 2010.

[6] M.F. Zaman, A. Sharma, Z. Hao, and F. Ayazi, "A Mode-Matched Silicon-Yaw Tuning-Fork Gyroscope with Subdegree-Per-Hour Allan Deviation Bias Instability," IEEE Journal of Microelectromechanical Systems, Vol. 17, Issue 6, December 2008, pp. 1526-1536.

[7] M.F. Zaman, A. Sharma, and F. Ayazi, "The Resonating Star Gyroscope: A Novel Multiple-Shell Gyroscope with sub-5 deg/hr Allan Deviation Bias Instability," IEEE Sensors Journal, Volume 9, Issue 6, June 2009, pp. 616-624.

[8] F. Ayazi and K. Najafi, "A HARPSS Polysilicon Vibrating Ring Gyroscope," IEEE Journal of Microelectromechanical Systems, vol. 10, June 2001, pp. 169-179.

[9] Marek, Jiri. "MEMS for automotive and consumer electronics." *Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International*. IEEE, 2010.

[10] Next Generation of MEMS gyroscopes and inertial combo sensors from SensorDynamics, [online]: http://www.imicronews.com/news/Generation-MEMS-gyroscopes-inertial-combo-sensors-SensorDyn,6375.html

[11] H. Johari and F. Ayazi, "High Frequency Capacitive Disk Gyroscopes in (100) and (111) Silicon," Proc. 20th IEEE International Conf. on Micro Electro Mechanical Systems (MEMS 2007), Kobe, Japan, Jan. 2007, pp. 47-50.

References

[12] W. K. Sung, M. Dalal, and F. Ayazi, "A Mode-Matched 0.9 MHz Single Proof-Mass Dual-Axis Gyroscope," Tech. Digest of the 16th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'11), Beijing, China, June 2011, pp. 2821-2824.

[13] F. Ayazi, "Multi-DOF Inertial MEMS: From Gaming to Dead Reckoning," *Invited Paper*, Tech. Digest of the 16th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS'11), Beijing, China, June 2011, pp. 2805-2808.

[14] Lynch, D. "Vibratory gyro analysis by the method of averaging." *Proc. 2nd St. Petersburg Conf. on Gyroscopic Technology and Navigation, St. Petersburg.* 1995.

[15] R. Tabrizian, M. Hodjat-Shamami, and F. Ayazi. "High-Frequency AlN-on-Silicon Resonant Square Gyroscopes." IEEE Journal of Microelectromechanical Systems, Vol. 22, Issue 5, October 2013, pp. 1007-1009.

[16] Bryan, G. H. "On the beats in the vibrations of a revolving cylinder or bell." *Proceedings of the Cambridge Philosophical Society*. Vol. 7. No. 1. 1890.

[17] J. A. Gregory, "Characterization, Control and Compensation of MEMS Rate and Rate-Integrating Gyroscopes", Doctoral Dissertation, University of Michigan, 2012

[18] Alexander A. Trusov, Igor P. Prikhodko, Sergei A. Zotov, Andrei M. Shkel, "Low-Dissipation Silicon MEMS Tuning Fork Gyroscopes for Rate and Whole Angle Measurements," IEEE Sensors Journal, vol. 11, no. 11, pp. 2763-2770, November 2011.

[19] L. Sorenson, P. Shao, and F. Ayazi, "Effect of thickness anisotropy on degenerate modes in oxide micro-hemispherical shell resonators" IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2013), Taibei, Taiwan, Jan. 2013, pp. 169-172

