Ultimate (Resonant) MEMS Sensors

IEEE Sensors 2013 Tutorial Session 1: Novel Trends in Sensing

Siavash Pourkamali

Department of Electrical Engineering University of Texas at Dallas

November 3rd, 2013

What is a MEMS Resonator? Scaling Guitar Strings

Piezoelectric MEMS Resonators

DENVER DALLAS

Electrostatic MEMS Resonators

Pourkamali et al "Low-Impedance VHF and UHF Capacitive Silicon Bulk Acoustic Wave Resonators-Part I: Concept, IEEE transaction on electron devices

Micro-Resonator Transduction

□ Common Micro-Resonator Transduction Mechanisms:

Capacitive Silicon Bulk Acoustic Wave Resonator¹

1GHz AIN on Silicon Piezoelectric Resonator²

¹S. Pourkamali, Z Hao, and F Ayazi, VHF Single Crystal Silicon Capacitive Elliptic Bulk-Mode Disk Resonators—Part I: Implementation and Characterization, JMEMS 2004.

²B. Harrington, M. Shahmohammadi, and R. Abdolvand, "Toward Ultimate Performance in GHz MEMS Resonators: Low Impedance and High Q," IEEE MEMS 2010

Thermal Actuation with Piezo-Resistive Readout

L

Thermally Actuated Resonators

Advantages

- Simplicity of fabrication
- Large actuation force
- Low operating voltage
- Robustness

Disadvantage

- Power consumption
- Speed?

Usually known as slow actuators suitable for DC or very low-frequency applications

Thermal Time Response

Thermal Time Response

Thermal Time Response

Scaling Behavior of Thermal Actuation

Mechanical Time constant $\propto f_m^{-1} \propto X$

Thermal time constant shrinks faster than mechanical time constant

Fabrication Process

Stillight State and State aver

IEEE SENSORS 2013

- dl

-

Measurement Results: 61MHz I²⁻BAR

Measurement Results

Resonator Operation

Resonator Electrical Model

Overall v_{ac} Thermal T_{ac} Mechanical X_{th} Electrical i_{ac} Output Electrical Circuit

SENSORS 20

Measurement and Simulation Results

Scale Factor	Measured/Assumed Parameters				Calculated Parameters			
	Current (mA)	Q. Factor	Freq. (MHz)	g _m (mS)	Power (mW)	R _A (Ω)	g _m (mS)	Power (μW) @ g _m =1 (mS)
1X	60	14000	61.64	16.5	18.0	2.34	17.3	1041
	100	12000	60.85	62.3	50.0	2.34	42.8	1169
	60	7500	61.65	9.76	18.0	2.34	9.26	1945
	100	7700	61.11	37.5	50.0	2.34	27.1	1845
	= data obtained under atmospheric pressure							

Resonator Optimization

Low Power Devices

Measurement and Simulation Results

For all the calculations the **bulk** piezoresistive coefficient of silicon was used!

SENSORS 20

Micro-Resonator Transduction

Common Micro-Resonator Transduction Mechanisms:

¹S. Pourkamali, Z Hao, and F Ayazi, VHF Single Crystal Silicon Capacitive Elliptic Bulk-Mode Disk Resonators—Part I: Implementation and Characterization, JMEMS 2004.

²B. Harrington, M. Shahmohammadi, and R. Abdolvand, "Toward Ultimate Performance in GHz MEMS Resonators: Low Impedance and High Q," IEEE MEMS 2010

Zero Bias Operation Via Internal Electromechanical Mixing

Network Analyzer

Zero Bias Operation (AC)

Zero Bias Operation Via Internal Electromechanical Mixing

Operation with DC Bias

Operation without DC Bias

Zero Bias Operation Via Internal Electromechanical Mixing

Applications (Mass Sensing)

Mechanical resonators vibrate more slowly (at lower frequencies) if they become heavier

Airborne Micro/Nanoscale Particles

Air-borne particle concentration and Size distribution measurement and monitoring

Importance

- Human health
- Climate change
- Controlled Environments

 Particles bigger than 10 micrometers are cought in the nose and throat.

Particles the size of 1 micrometer can penetrate deep into the lungs and even directly into the blood steam.

Measurement Setup

Weighing Air-Borne Particle

Deposited mass in 10s intervals = 1-5 ng

□ Particle mass density in lab air = 14.2 µg/m³

SENSORS 2013

Single Particle Detection

□ Shift in frequency quantized, multiples of Some intervals shift is double One interval no shift

DENVER UT DALLAS

~900Hz shift per particle

SEM of the resonator after deposition

10µm

Particle Mass Distribution Analysis

Inertial Aerosol Impactor

Fully MEMS Cascade Impactor

Impactor Fabrication

Assembly Procedure

Alignment Technique

Combined Resonator/Impactor System Assembly

femtoScale

Test Results

WIEEE SENSORS 2013

-

Biosensing: Microarray Technology

Biomolecular Mass Sensing

IEEE SENSORS 2013

Surface Linking Synthetic Scheme

DENVERSITY OF UT DALLAS

Single Molecular Layer Detection

$L_1, L_{2,}W_1, \\ W_2, W_3$ (µm)	f ₁ (MHz) Functionalized	f₂(MHz) Octadecylamine	$\Delta f(\text{Hz})$	$\Delta f(ppm)$
23,36,33,4,2	30.437427	30.434413	3014	99
23,36,33,4,2	29.891373	29.888322	3051	100
23,36,33,, 2	23.809419	23.805919	3400	140
23,36,33,, 2	27.001593	26.998914	2679	99

IEEE SENSORS 2013

Resonator Surface Coverage

Based on the frequency shift, device mass and frequency

Considering the theoretical maximum possible added mass in 1 nm² = 4x10⁻⁹ pg

Resonator Surface Coverage

Dangling Bonds/3 = Epoxides

The Maximum Possible Number of Octadecylamine in 1 nm² = 8.8 Molecules

The Theoretical Added Mass in 1 nm² = 4x10⁻⁹ pg

SENSORS 20

Surface X-ray Photoelectron Spectroscopy (XPS) Analysis

Direct in-Liquid Measurement

- Viscous damping from surrounding liquid significantly suppresses mechanical resonance and lowers quality factor (Q)
- High Q is needed for accurate frequency measurement and effective resonator transduction

SENSORS 20

Direct in Liquid Measurement: Out-of-Plane Microcantilever

Direct in Liquid Measurement: In-Plane Microcantilever

SENSORS 2013

Quasi-Rotational Dual-Half-Disk

SENSORS 2013

Our Approach: Rotational Mode Disk

IEEE SENSORS 2013

Resonator Operation

DENVER UT DALLAS

50

Measurement Results

Record high quality factor of 304 measured in liquid

Potential for direct sensing of biomolecules in biological samples

SENSORS 2013

Different Disk Resonator Topologies

Resonators Encapsulated in Micro-Fluidic Channels

IEEE SENSORS 2013

Liquid Viscosity Monitoring

Piezoelectric Rotational Mode Disk Resonators as viscosity monitors

IEEE SENSORS 2013

Direct detection of MCH molecules in liquid media MCH interact easily with Au through the sulfur atom

Piezoelectric Disk Resonators for Direct Molecular Sensing

- **Q** Rotational mode disk resonators are demonstrated as direct
- real-time bio-molecule monitors
- Exposure to 1.0 mM MCH in aqueous solution
- Saturation is reached after 1hr

DNA Detection Mechanism

Blank gold surface (I) Treatment with HS-ssDNA (2.0 μ M/1.0 M KH₂PO₄, PH 4.2) (II) Exposure to 1.0 mM Mercapto-Hexanol in aqueous solution (III) Hybridization with Complementary DNA Solution (1.0 μ M/1.0 M NaCl Tris-HCl 1.0 mM EDTA)

DNA Detection Mechanism

Blank gold surface

(I) Treatment with HS-ssDNA (2.0 μ M/1.0 M KH₂PO₄, PH 4.2)

(II) Exposure to 1.0 mM Mercapto-Hexanol in aqueous solution

(III) Hybridization with Complementary DNA Solution (1.0 μ M/1.0 M NaCl Tris-HCl 1.0 mM EDTA)

DNA Detection Mechanism

Blank gold surface

(I) Treatment with HS-ssDNA (2.0 μ M/1.0 M KH₂PO₄, PH 4.2)

(II) Exposure to 1.0 mM Mercapto-Hexanol in aqueous solution

(III) Hybridization with Complementary DNA Solution (1.0 μ M/1.0 M NaCl Tris-HCl 1.0 mM EDTA)

DNA Detection Mechanism

Blank gold surface(I) Treatment with HS-ssDNA (2.0 μM/1.0 M KH2PO4, PH 4.2)(II) Exposure to 1.0 mM Mercapto-Hexanol in aqueous solution(III) Hybridization with Complementary DNA Solution (1.0 μM/1.0 M NaCl Tris-HCl1.0 mM EDTA)

DNA Detection Results

Gas Sensing: Detection of Volatile Organic Compounds

Sensors capable of organic compounds detection in gas phase have numerous applications in oil and gas industry

- Rapid estimation of oil content of oil sand samples and early detection of hazardous leaks
- Costly and time consuming process of using off-site laboratory analysis avoided

Detection of Gasoline Vapor

□ Thin polymer coating to absorb organic vapors

Disaster Survivor Detection!

Oscillator vs. Resonator

Oscillation Requirement

Chengjie Zuo; Van der Spiegel, J.; Piazza, G.; , "1.5-GHz CMOS voltage-controlled oscillator based on thickness-field-excited piezoelectric AlN contour-mode MEMS resonators," *Custom Integrated Circuits Conference (CICC), 2010 IEEE*, vol., no., DENNEL 4, 1942245ept. 2010 66

ENSORS 2013

Positive Feedback Loop for Oscillation

Thermal- Piezoresistive Resonators (Internal Amplification)

Thermal-Piezoresistive Oscillation Concept

Thermal-Piezoresistive Oscillation Concept

Previous Work from NXP SC

K. L. Phan, P. G. Steeneken, M. J. Goossens, G. E.J. Koops, G. J.A.M. Verheijden and J.T.M.v. Beek, "Spontaneous mechanical oscillation of a DC driven single crystal, "to be published, http://arxiv.org/abs/0904.3748 (2009).

EEEE SENSORS 2013
 Control Number 1 101 Control Number 4 2 201

Fabricated Thermal-Piezoresistive Resonator

Oscillation Results

Oscillation Results

Higher Frequency Oscillation

SENSORS 20

Oscillation Results

Л

Nonlinear Flexures In Thin Actuators

Self-Oscillating Sensor Measurement Results

Overall Quantized Frequency Shift of 14.1kHz (3000 ppm)

Response to Different Gases

Measure the frequency shift of TPO in different gases

"Gas sensing using thermally actuated dual plate resonators and self-sustained oscillators," Xiaobo Guo, A. Rahafrooz, Yun-bo Yi and S. Pourkamali, 2012 IEEE International Frequency Control Symposium (IFCS 2012).

Measurement Result (TPR)

- Frequency 3.465MHz with power consumption of 0.44mW and a 0.21mA DC
- **Opposite** frequency shift to the TPO under the same pressure change
- Δf 42ppm, changing the ambient air pressure from 84kPa to 43kPa, about 50X smaller
- The damping coefficient in different ambient air pressure is calculated from Eq.(3). They are used to calculate the frequency shift of the TPR.

79

Pressure Sensing

- Frequency 3.456MHz with power consumption 9.10mW
- Higher ambient air pressure, higher damping, lower vibration amplitude (Vp-p) with higher k and higher frequency
- Δf -2300ppm, changing the ambient air pressure from 84kPa to 43kPa

Trans-Conductance Electrical Model

Overall Equivalent Electrical Circuit at resonance

$$H_T\Big|_{s=j\omega_0} = g_m = \frac{i_m}{v_a} = 4\alpha E^2 \pi_l Q \frac{AI_{dc}^2}{KLC_{th}\omega_m}$$

Oscillation Condition in Thermal Resonators

Oscillator Optimization

Internal Thermal-Piezoresistive Feedback

WIEEE SENSORS 2013

Self-Q-Enhancement

Self-Q-Amplification

Internal self-amplification can also be used for resonator Qamplification

Magnetically Driven Resonator with Internal Amplification

Lorentz Force Magnetometer with Internal Amplification

- Internal Amplification increases vibration amplitude for the same input force leading to a more sensitive sensor
- Sensitivity per bias current increases proportionally with the amplified Q

Lorentz Force Magnetometer with Internal Amplification

Up to 15X improvement in sensitivity per bias current demonstrated
 This can potentially be orders of magnitude

Towards Quantum Level Sensitivity?!

- □ Use thermal-piezoresistive interaction to amplify resonator Q by 1000-10000X
- Effective Q up to 40,000,000 already demonstrated for a 4.5MHz resonator
- □ This can be done by setting V_{Q.E.} to a value slightly short of self-oscillation
- An AC current at the exact same frequency can excite the resonant mode in presence of a weak magnetic field
- Resulting displacement is amplified by the effective Q factor

DENVER UT DALLAS

A nano-gap and electrostatic sensing can then pick up the resonator vibrations

Acknowledgements

- Thanks to our sponsors: NSF, State of Colorado, DOE, MSP Corp., and DU
- My colleagues and collaborators: Professors Wilson, Voyles, Yi, Purse (DU), Abdolvand (Oklahoma State Univ.), Bright (CU Boulder), Tabib-Azar (U. of Utah)
- My former/current graduate students: Amir Rahafrooz, Arash Hajjam, Babak Tousifar, Xiaobo Guo, Emad Mehdizadeh, Ayesha Iqbal, etc.

Colorado

Office of Economic Development and International Trade

SENSORS 20

Thank You for Your Attention

Operation Mechanism of Resonator

*1. "High frequency thermally actuated electromechanical resonators with piezoresistive readout," A. Rahafrooz, and S. Pourkamali, IEEE Transactions on Electron Devices, 58,4(2011).

*2. "Fully Micromechanical Piezo-Thermal Oscillators," A. Rahafrooz, and S. Pourkamali, IEEE International Electron Device Meeting (IEDM), Dec.(2010).

Coupled Equations

 $m\ddot{x} + c\dot{x} + k(x - \alpha l\Delta T) = 0$

Final Solution

Combine these equations together, resulting:

$$\Delta \ddot{T} + \left(Nk\alpha l + \frac{c}{m}\right)\Delta \ddot{T} + \frac{(cNk\alpha l + k)\Delta \dot{T}}{m} = 0$$
(1)

Where $N=I^2\pi_l R_0/(c_t A_{sec})$.

Assume $\Delta T = \Delta T_0 e^{i\omega t}$. Eq. (7) becomes

$$-i\omega^{3} - \left(Nk\alpha l + \frac{c}{m}\right)\omega^{2} + (cNk\alpha l + k)\frac{i\omega}{m} = 0$$
(2)

Solution – part 1

$$-i\omega^{3} - \left(Nk\alpha l + \frac{c}{m}\right)\omega^{2} + (cNk\alpha l + k)\frac{i\omega}{m} = 0$$
 (2)

For Eq. (9) to be satisfied, **the real part** of it should be equal to zero, resulting in:

$$c = -mNk\alpha l \tag{3}$$

SENSORS 20

The damping c is compensated by the term "-mNkal"

Solution – part 2

$$-i\omega^{3} - \left(Nk\alpha l + \frac{c}{m}\right)\omega^{2} + \left(cNk\alpha l + k\right)\frac{i\omega}{m} = 0$$
 (2)

For Eq. (9) to be satisfied, the imaginary part of it should be equal to zero, resulting in:

$$\omega^2 = \frac{(cM\alpha l+1)k}{m} \tag{4}$$

Since $cM\alpha l << 1$ Eq. (4) can be simplified to

$$\omega^2 \approx \frac{k}{m}$$

(5)

Can it Catch up with SQUIDs?

```
Magnetic Force: F = 2.B.I.L
```

• B = 10⁻¹²T , I_{ac} = 100mA, L = 500 μ m \rightarrow F = 10⁻¹⁵N

□ For resonator mechanical stiffness of K = 400N/m, displacement amplitude: x = Q_{eff} . F / K , Assuming Q_{eff} = 40,000,000, x = 10⁻¹¹m

- For a capacitive gap of g=100nm, electrostatic bias voltage of 5V, device thickness of 10µm, and resonant frequency of 1MHz:
 i_{out} = 2ε₀AVωx/g² = 2.8nA
- 28pA is within the detectable range for output of low frequency resonators (e.g. gyroscopes have output signals in the same range)
- For example a Trans-Impedance Amplifier with trans-resistance of 1MΩ turns this into a 2.8mV signal

Calculation of Actuator Thermal Capacitance

$$g_m = 4\alpha E^2 \pi_l Q \frac{AI_{dc}^2}{KLC_{th}\omega_m}$$

To calculate the g_m , all the parameters except the effective thermal capacitance of the actuators (C_{th}) are known.

$$C_{th} = \frac{I_{dc} i_{ac} R_A}{T_{ac} \omega_m}$$

Fabrication Results

Test Setup for Mass Sensitivity Characterization

Particles deposited on the resonators while monitoring

Generation of Artificial Particles

Aerosol particles with known size and composition generated

Test Setup

Cause of Negative TCF

Main cause is negative temperature coefficient of Young's modulus (TCE)

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

K is stiffness and m is mass

High Concentration N-type Doping

Effect of high concentration N-type doping on the temperature drift

Only short doping and drive-in steps were required for reaching high concentrate dopant levels

Measurement Results

TCF **before** doping = -39.86ppm/°C TCF after doping = 0.31ppm/°C (Positive TCF)

TCF Dependence on Bias Current

□ TCF as low as: -0.05ppm/°C

PLL (lysine units in kg/mol)-g(grafting ratio: PEG chains per lysine unit)-PEG (mass of PEG in kg/mol)

NH2

Table 1: Thickness d and hydration of PLL-g-PEG layers adsorbed on SiO2. .

Polymers	salt	d	SLD	hydration	χ ²
	[mM]	[Å]	[Å ⁻²]	[vol%]	-
PLL(20)-[3.5]-PEG(2)	10	38.6	5.05E-06	82	0.053
PLL(20)-[3.5]-PEG(2)	1	39.7	5.48E-06	90	0.052
PLL(300)-[2.1]-PEG(2)	10	46.3	5.33E-06	87	0.062
PLL(300)-[3.2]-PEG(2)	10	49.1	5.56E-06	91	0.060
PLL(300)-[3.2]-PEG(2)	1	50.6	5.59E-06	92	0.082
PLL(300)-[2.1]-PEG(5)	10	38.2	5.44E-06	89	0.068

Numbers derived from neutron scattering experiments.

QCM-D response at three overtones for stepwise build up of depicted surface architecture

IEEE SENSORS 2013

Localized Thermal Oxidation for Frequency Trimming and Temperature Compensation of Micromechanical Resonators

- Resonance frequency of silicon MEMS resonators is dependent on physical dimensions of the resonating structure
- Post-fabrication frequency trimming via pulsed-laser-deposition, material diffusion and electrostatic frequency trimming → Deficiencies such as frequency inaccuracy
- Presented approach based on thermal oxidation of the surface of the beams

Presentation in MEMS 2012 Conference:

Silicon dioxide forming on the hot surfaces

SENSORS 20

Measurement Results

WIEEE SENSORS 2013

Self-controlled Frequency Trimming Technique for Micromechanical Resonators

Presentation in Hilton Head 2012 workshop:

Schematic demo of the autonomous frequency trimming technique
The cooling effect at resonance, allows the localized oxidation to stop automatically as soon as the resonator frequency reaches the targeted actuation frequency

EEE SENSORS 2013

Measurement Setup and Results

• Changes in dimensions and Young's modulus as well as internal stress caused by oxidation results in a permanent change in the resonant frequency of the device

EEE SENSORS 2013

Input-Output Insulation in Thermal-Piezoresisitive Resonant Microsctructures using Embedded Oxide Beams

Presentation in International Frequency Control Symposium 2012:

- Thermally actuated MEMS resonators with electrically insulated input and output ports
- Significantly reduced feed through current makes it possible to use such resonators in electronic circuits as frequency selective components
- Eliminates the data processing required to extract the motional conductance and Q factor of such resonators from measurements

SENSORS 2013

Measurement Results

- The downward resonance peak in the one-port device is due to the negative piezoresistive coefficient of the structural material (N-type Si), while the out of phase motion of the two sections in the two-port device results in an upward resonance peak
- The resonance peak for the two port resonator has much larger amplitude due to elimination of feed-through

IEEE SENSORS 2013

Silicon Nonowire Fabrication Technique

□ Silicon nanowires have great potentials in nanoelectronics and nanoelectro-mechanical systems:

- Huge piezoresistive coefficients
- Large dependence of electrical conductivity to molecular adsorption
- Extremely high mass sensitivity of nanowire resonators

□ Costly and time consuming processes: no controlled batch-fabrication capability in any of the proposed fabrication methods

□ Our Method: low cost, controllable process, the ability to be integrated in N/MEMS structures such as high frequency thermal-piezoresistive resonators

Arbitrary Airborne Particle Measurements

WIEEE SENSORS 2013

Controlled Batch Fabrication Of Crystalline Silicon Nonowires

□ Using the Anisotropic wet etching of silicon in alkaline solutions (e.g. KOH or TMAH)

□ Rotational misalignment between the photo-lithography defined patterns and the crystalline orientation of silicon

SENSORS 20

Fabrication Results

Fabrication Results

WIEEE SENSORS 2013