**EPFL: École Polytechnique Fédérale de** Lausanne (Switzerland) From its foundation in 1853, the **EPFL** has evolved into a topranked research and teaching institution attracting some of the best researchers and professors in the world. Nearly 10,000 people from 110 nations share this campus

 IEEE
 SENSORS 2013

 Tutorials: November 3, 2013
 Conference: November 4-6, 2013

Baltimore, November 3rd, 2013

# **Tutorial Technologies for an** Implantable Nano-Bio-Sensing Laboratory

SANDRO CARRARA

ÉCOLE POLYTECHNIQUE Laboratoire des Systèmes Intégrés (LSI) FÉDÉRALE DE LAUSANNE

# **Different outcomes for** different patients

Cancer (all



| norapoutto aroa    | hate of emcacy with standard drug treatment |
|--------------------|---------------------------------------------|
| Cancer (all types) | 25%                                         |
| heimer's disease   | 30%                                         |
| Incontinence       | 40%                                         |
| Hepatitis C        | 47%                                         |
| Osteoporosis       | 48%                                         |
| umatoid arthritis  | 50%                                         |
| aine (prophylaxis) | 50%                                         |
| Migraine (acute)   | 52%                                         |
| Diabetes           | 57%                                         |
| Asthma             | 60%                                         |
| diac arrhythmias   | 60%                                         |
| Schizophrenia      | 60%                                         |
| Depression         | 62%                                         |
|                    |                                             |

of office cy with standard drug treatment

For depression, the data apply specifically to the drug class known as selective serotonin reuptake inhibitors

Source: Brian B. Spear, Margo Heath-Chiozzi, and Jeffrey Huff, "Clinical Application of Pharmacogenetics," Trends in Molecular Medicine (May 2001)

# System Biology is not enough



(c) S.Carrara, EPFL (Switzerland)

### **Personalized Therapy**



Development of Monitoring Point-of-Care Devices is a key-factor for succeeding in Personalized Therapy (c) S.Carrara, EPFL (Switzerland)



<sup>(</sup>c) S.Carrara, EPFL (Switzerland)

# Personalized Therapy and I.M.D.



is a key-factor for succeeding in Personalized therapy

# Fully Connected Human++



### State-of-the-Art is limited

#### A. Menarini GlucoMenDay

Abbott FreeStyle Navigator



**Dexcom SEVEN Plus** 

Medtronic MiniMed Guardian

Continuous Monitoring Systems typically consist of a biosensor coupled with a microdialysis sampling system

# **Multi-Panel Platforms for** Human Metabolism



# **P450 for Drugs Monitoring**



# **Problems on Detection Limits**



Detection of verapamil by 3A4, an antihypertensive drug, was from 400  $\mu$ M to 3mM while its therapeutic range is below 0.3  $\mu$ M

#### An improved P450/Electrode coupling by using Carbon Nanotubes



## **Nano-Bio-Sensors integration**

**BARE ELECTRODE** 





Boero, Carrara et al. / IEEE PRIME 2009 Boero, Carrara et al. / IEEE ICME 2010 De Venuto, al. et Carrara / IEEE Senors 2010 Boero, Carrara et al. / Sensors & Actuators B 2011 Carrara et al. / Biosensors and Bioelectronics 2011 Boero, Carrara et al. / IEEE T on NanoBioScience 2011 CARBON NANOTUBES  $10.3 \pm 1.14$  nm CNTS + PROBE ENZYMES

3.6 nm

4.9 nm

5.2 nm

#### 19.9 ± 3.38 nm

Acc.V Spot Magn Det WD Ex 1.70 kV 2.0 100000x TLD 2.0 1

(c) S.Carrara, EPFL (Switzerland)

Acc.V

# **Improved Detection Limit**

S. Carrara et al. / Biosensors and Bioelectronics 26 (2011) 3914-3919



Cyclophosphamide (CP), an anti-cancer agent, is detected by P450 3A4 in its therapeutic range

# **Detection of Several Drugs**

C. Bay-Rossi, G. De Micheli, S. Carrara, Sensors 2012, 12, 6520-6537

| Drugs            | Pharmacologic | al P450             | Sensitivity<br>(nA/µM*mm²) |       | Detection limit<br>(µM) |       |
|------------------|---------------|---------------------|----------------------------|-------|-------------------------|-------|
|                  |               |                     | PBS                        | Serum | PBS                     | Serum |
| Cyclophosphamide | 3-77          | <b>2B6</b>          | 1                          | 0.3   | 2                       | 14    |
| Ifosfamide       | 10-160        | 3A4                 | 1.6                        | 0.4   | 2                       | 7     |
| Ftorafur         | 1-10          | 1A2                 | 8.8                        | 3.5   | 0.6                     | 1     |
| Etoposide        | 34-102        | -                   | 74                         | 9     | 0.05                    | 0.5   |
|                  | t             |                     |                            |       |                         |       |
|                  | (c            | ) S.Carrara, EPFL ( | SERUM                      |       |                         |       |

## Breast cancer drugs cocktail

cyclophosphamide, methotrexate, and fluorouracil (CMF)<sup>(8)(11)</sup>;
fluorouracil, doxorubicin, and cyclophosphamide (FAC)<sup>(8)</sup>;
cyclophosphamide, doxorubicin and 5-fluorouracil (CAF)<sup>(9)</sup>;
fluorouracil, epirubicin, and cyclophosphamide (FEC)<sup>(8)(11)(12)</sup>;
fluorouracil, doxorubicin, and cyclophosphamide <sup>(11)(12)</sup>;
flosfamide, Carboplatin, Etoposide (ICE)<sup>(9)</sup>;
ifosfamide, metho- trexate and 5-fluorouracil (IMF)<sup>(9)</sup>;

•cyclophosphamide, mitoxantrone, and etoposide<sup>(12)</sup>.

[8] New England Journal of Medicine, The [0028-4793] Hortobagyi yr:1998 vol:339 iss:14 pg:974 GABRIELN. HORTOBAGYI, M.D.
[9] Cancer Chemother Pharmacol (1999) 44 (Suppl): S26±S28
A.Y. Chang, L. Hui, R. Asbury, L. Boros, G. Garrow, J. Rubins
[10] *Journal of Clinical Oncology*, Vol 22, No 12 (June 15), 2004: pp. 2284-2293
M. Ayers, W.F. Symmans, J. Stec, A.I. Damokosh, E. Clark, K. Hess, et al.
[11] *Journal of Clinical Oncology*, Vol 21, Issue 13 (July), 2003: 2600-2608
Manfred Kaufmann, Gunter von Minckwitz, Roy Smith, Vicente Valero, et al
[12] The Lancet [0140-6736] Weiss yr:2000 vol:355 iss:9208 pg:999 *Raymond B Weiss, Robert M Rifkin, F Marc Stewart, Richard L Theriault, et al.*

# Different Drugs give peaks in different positions

| Substrate/inhibitor                                                                        | of CYP2C9 | $K_m (\mu \mathbf{M})$                            | $K_i$ ( $\mu$ M) | CYP2C9                                   | (mV) | $E_{\rm mid}$ CYP2C9 + substrate (mV) |
|--------------------------------------------------------------------------------------------|-----------|---------------------------------------------------|------------------|------------------------------------------|------|---------------------------------------|
| Torsemide (s)<br>Diclofenac (s)<br>Tolbutamide (s)<br>S-Warfarin (s)<br>Sulfaphenazole (i) |           | 11.4<br>6.8<br>120 <sup>a</sup><br>6 <sup>b</sup> | 0.1 <sup>c</sup> | $-41 \\ -41 \\ -41 \\ -41 \\ -41 \\ -41$ |      | -19<br>-41<br>-37<br>-36<br>-41       |
| CO <sub>(g)</sub>                                                                          |           |                                                   |                  | -41                                      |      | 8                                     |

D.L. Johnson et al. / Biochemical Pharmacology 69 (2005) 1533-1541

 $i(V) = i_{C}(V) + \sum_{\forall k} A_{k} e^{-\frac{(V-V_{k})^{2}}{\sigma_{k}^{2}}}$ Charging current

**Faradic currents** 

The cytochrome P450 2C9 presents peak shifts in the range of tens of mV by changing drug substrates

# **The Heterotropic Kinetics**



#### • HETERO ACTIVATION

#### • PARTIAL INHIBITION



**D**2

## **Multiple drugs detection: CYP3A4**



#### Different amounts of CP and DX result in

two very-well defined peaks once detected by P450 3A4 (c) S.Carrara, EPFL (Switzerland)



Naproxen (NP) and Flurbiprofen (FL) also result in two very-well defined peaks once detected by P450 2C9 (c) S.Carrara, EPFL (Switzerland)

# Peaks Amplitude is affected by the other drugs

| Substrate/inhibitor o | f CYP2C9 | $K_m$ ( $\mu$ M) | $K_i$ ( $\mu$ M) | CYP2C9 (mV)               | $E_{\rm mid}$ CYP2C9 + substrate (mV) |
|-----------------------|----------|------------------|------------------|---------------------------|---------------------------------------|
| Torsemide (s)         |          | 11.4             |                  | -41                       | -19                                   |
| Diclofenac (s)        |          | 6.8              |                  | -41                       | -41                                   |
| Tolbutamide (s)       |          | 120 <sup>a</sup> |                  | -41                       | -37                                   |
| S-Warfarin (s)        |          | 6 <sup>b</sup>   |                  | -41                       | -36                                   |
| Sulfaphenazole (i)    | Dereral  |                  | 0.1°             | -41                       | -41                                   |
| CO <sub>(g)</sub>     | Depende  | ence from        | the other        | arug <sub>l</sub> concent | rations                               |

D.L. Johnson et al. / Biochemical Pharmacology 69 (2005) 1533-1541

$$i(V) = i_{C}(V) + \sum_{\forall k} \prod_{\forall j \neq k} A_{k} \left( \begin{bmatrix} C_{j} \end{bmatrix} \right)$$

**Charging current** 

#### **Faradic currents**

The Gaussian decomposition in cytochrome P450 based detection has to account for the heterotropic kinetics

# The Problem of multi-panel arrays response



# **Multi-Platform design**

#### Four working electrodes differently functionalized



# **Multiple Calibration Curves**



Deal with Calibration Curves Family allow us to improve specificity at system level

# **Sensors Query in Time**



(c) S. Carrara, EPFL (Switzerland) (c) S. Carrara, EPFL (Switzerland)

# Multi-Panel Platforms for Human Metabolism





#### **Cottrell Effect**

BOERO et al.: HIGHLY SENSITIVE CARBON NANOTUBE-BASED SENSING IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 10, NO. 1, MARCH 2011



(c) S.Carrara, EPFL (Switzerland)

# **Multi-Panel Platforms for** Human Metabolism



#### **ATP detection**



## **Indirect ATP Detection**



ATP is detected by a decreasing current at the interface

# **Indirect ATP Detection**



ATP detection is affected by different values of glucose

#### New Concept in Human Metabolism Telemetry



The design of implantable/wearable systems for continuous monitoring of human metabolism is feasible

## Under-the-Skin Device & Wearable Patch



An antenna very close to the chip is required for the remote powering

#### **Under-the-Skin Device**



Minimally invasive with size within that of a surgery needle
# A reliable system requires:

- 1. CNT-Biochip fully integration
- 2. Precise Current measurements
- 3. Multiplexing for different molecules
- 4. Reliability in Temperature and pH
- 5. Multiplexing Molecular Detection with T and pH
- 6. Reliability for Voltage Sweep
- 7. Remote Powering

# A reliable system requires:

- 1. CNT-Biochip fully integration
- 2. Precise Current measurements
- 3. Multiplexing for different molecules
- 4. Reliability in Temperature and pH
- 5. Multiplexing Molecular Detection with T and pH
- 6. Reliability for Voltage Sweep
- 7. Remote Powering

#### 1. Nano-Bio-Sensors Micro-Spotting

# Boero, Carrara et al. / IEEE BioCAS 2011 Carbon Nanotubes + Nafion Acc.V Spot Magn Det WD 1 μm 3.00 kV 2.0 20000x TLD 2.9 W3

#### 1b. Nano-Bio-Sensors by Electrodeposition



#### 1b. Nano-Bio-Sensors by Electrodeposition

**DROP-CASTING** 



(c) S.Carrara, EPFL (Switzerland) ELECTRODEPOSITION

#### 1c. Nano-Bio-Sensors by CVD

#### **Integration by Direct Growth**



#### 1c. Nano-Bio-Sensors by CVD

#### Integration by Direct Growth

#### Results

1.Fe electrodeposition

#### 2.Deposition

- 10 min annealing
- 5 min deposition
- 750 ° C
- 0.25 I/h C<sub>2</sub>H<sub>2</sub> flow
- 0.25 I/h CO<sub>2</sub> flow



Nanoparticles Non-compact Compact



#### 1d. Four different techniques



# A reliable system requires:

- 1. CNT-Biochip fully integration
- 2. Precise Current measurements
- 3. Multiplexing for different molecules
- 4. Reliability in Temperature and pH
- 5. Multiplexing Molecular Detection with T and pH
- 6. Reliability for Voltage Sweep
- 7. Remote Powering

#### **2. Current Measurements Front-End**





Current-to-frequency converter

### **3. Multiplexing Molecular Detection**



#### 4. Reliability in Temperature & pH



(c) S.Carrara, EPFL (Switzerland)

### 4. Reliability in Temperature & pH



A. Cavallini, al et, S. Carrara / IEEE BioCAS, 2012.

#### Thin-film technology for pH and Temperature sensors

#### 4. Reliability in pH: OCP vs time



#### 4. Reliability in pH: OCP vs time



Measure of Open Circuit Potential (OCP) vs pH

#### 4. Reliability in T



Measure of the Resistance vs Temperature

# 5. Multiplexing Molecular detection with T and pH



Figure 8. The bloks-scheme of the multiplexing

#### The switches also multiplex the T and pH measure

#### 6. Reliability for Voltage Sweep



Sweeping the voltage is definitely required to distinguish each single drug contribution in the Voltammogram

#### 6. Reliability for Voltage Sweep



(c) S.Carrara, EPFL (Switzerland)

al et S. Carrara, et al, IEEE LiSSA 2011

# The Chip Frontend; 2<sup>nd</sup> prototype



 ✓ up to 5 different target detection
 ✓ CV actuation and readout for up to 3

targets with sub μA current

 ✓ CA initiation and readout for up to 2 targets with sub µA current

 Embedded PH and temperature sensing

#### IC interfaced to the passive platform

S. Carrara et al. / IEEE Sensors Conf. 2012



The IC has been fabricated in UMC 0.18 technology and interfaced to the passive multi-panel platform

#### The IC Potentiostat



The integrated potentiostat works quite well with respect the well-know and costly lab-one by Autolab

#### The IC Potentiostat

S.S. Ghoreishizadeh, al., S. Carrara & G. De Micheli / IEEE TBCAS, 2013 submitted



The integrated potentiostat works quite well with respect the well-know and costly lab-one by Autolab

# 7. Energy Scavenging Strategies



# **Inductive Coupling**

|      |                           |          |                                    |                                          |                                     |                | Distance |                           |                               |
|------|---------------------------|----------|------------------------------------|------------------------------------------|-------------------------------------|----------------|----------|---------------------------|-------------------------------|
| [8]  | Tx: 7.8 λ<br>Rx: 1.7 λ    | 4 MHz    | twd Int.: PWM-ASK<br>twd Ext.: ASK | twd Ext.:125 kbps                        | 10 mW                               |                | 5 mm     | Air                       | Neural<br>Recording<br>System |
| [9]  | Tx: 196.3 λ<br>Rx: 31.4 λ | 4 MHz    | twd Ext.: LSK                      | 5 kbps                                   | 6 mW                                |                | 25 mm    | Water Bearing<br>Colloids | Various                       |
| [10] | Tx: 13200 λ<br>Rx: 25.2 λ | 1 MHz    |                                    |                                          | 150 mW                              | 1% (min)       | 205 mm   | PVC Barrel                | Stomach                       |
| [11] | Tx: 184.9 λ<br>Rx: 10 λ   | 1 MHz    |                                    |                                          | 10 mW                               | 18.9%<br>(max) | 5 mm     | Air                       | Cerebral<br>Cortex            |
| [12] | Tx: 282.7 λ<br>Rx: 31.4 λ | 0.7 MHz  | twd Int.: ASK<br>twd Ext.: LSK     | twd Int.: 60 kbps<br>twd Ext.: 60 kbps   | 50 mW                               | 36% (max)      | 30 mm    |                           | Orthopaedic<br>Implant        |
| [13] | Tx: 31.4 λ<br>Rx: 5 λ     | 10 MHz   | twd Int.: ASK<br>twd Ext.: BPSK    | twd Int.: 120 kbps<br>twd Ext.: 234 kbps | 22.5 mW in vitro<br>≈ 19 mW in vivo |                | 15 mm    | Rabbit                    | Muscles                       |
| [14] | Tx: 196.3 λ<br>Rx: 3.5 λ  | 5 MHz    | twd Int.: OOK                      | 100 kbps                                 | 5 mW                                |                | 40 mm    |                           | Neural<br>Stimulator          |
| [15] | ≈ Rx: 112.5 λ             | 6.78 MHz | twd Int.: OOK<br>twd Ext.: LSK     | twd Ext.:200 kbps                        | 120 mW                              | 20% (max)      | 25 mm    | Dog Shoulder              | Muscolar<br>Stimulator        |
| [18] | Tx: 40 λ<br>Rx: 0.4 λ     | 915 MHz  |                                    |                                          | 0.14 mW                             | 0.06%          | 15 mm    | Bovine Muscle             | Various                       |

[8] "T.Akin et al.," A wireless implantable multichannel digital neural recording system for a micromachined sleve electrode", IEEE J. Solid -State Clic., vol.88, pp. 109-118, jan 1998.
[9] C.Sauer et al., "Power Harvesting and Telemetry in CMOS for implanted Devices", IEEE Trans on Clic., ults and Systems, vol.52, n.12, pp. 2605-2618, 2005.

[10] B. Lenaerts et. al., "An inductive power link for a wireless endoscope", Biosensors and Bioelectronics, vol.22, pp. 1890-1895, 2007

[11] K.M. Silay et.al., "Load Optimization of an inductive Power Link for Remote Powering of Biomedical Implants", IEEE Proc. of International Symposium on Circuits and Systems 2009, pp. 588-586, May 2009.

[12] B. Lenserts et. al., "An inductive power system with integrated bi-directional data-transmission", Sensors and Actuators A, vol. 115, pp.2 21-229, 2004

[18] J. Parramon et al., "ASIC -based battery less implantable telemetry microsystem for recording purposes", Eng. In Necl. 2 Microsoft Bio. Soc., in Proc. of the 19th Annual Int. Conf., vol.5, pp. 2225-2228, 1997.

[14] G. Gud na son et al., "A Chip for an implaintable Neural Stimulator", Analog Integrated Circuits and Signal Processing , vol.22, pp.81–89, 1999

[15] B. Smithet al., "An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle", IEEE Thans. on Biomed. Eng., vol.4.5, p. 468-475, 1998. [18] A.S.Y. Poon et al., "A mm-sized implantable Power Receiver with Adaptative Link Compensation", Stanford University



### **The Tiny Spiral Inductors**



J. Olivo et al./Microelectronic Engineering 113 (2014) 130–135

Two versions of the antenna have been fabricated and tested

### **The Tiny Spiral Inductors on Air**



Two versions of the antenna have been fabricated and tested

#### **The Multi-layer Inductor on Tissue**





J.Olivo, S. Carrara, G.Demicheli / IEEE TBCAS 2013

2.09 mW (25mm – Bovine Tissue) - THD 2.08%

3.6 mW (14mm – Bovine Tissue) - THD 2.27%

Communication is achieved at 100 kbps

#### **Data Transmission**



#### **The Patch Design**



#### **The Realized Remote Powering Patch**



The patch has been realized with off-the-shelf components

#### **The Android interface**



#### The Bluetooth<sup>®</sup> Interface for android smartphones as well as for iPads has been already developed



20 March 2013 Last updated at 01:49 GMT

#### 4.3K K Share

#### 'Under the skin' blood-testing device developed

#### By Michelle Roberts

Health editor, BBC News online

Scientists say they have developed a tiny blood-testing device that sits under the skin and gives instant results via a mobile phone.

The Swiss team say the wireless prototype half an inch (14mm) long - can simultaneously check for up to five different substances in the blood.

The data is sent to the doctor using radiowaves and Bluetooth technology.



The device sits under the skin and takes multiple readings

# **Biocompatible Packaging**



#### **The Biocompatible Integration**



#### Already tested in animal models
### **Biocompatibility tests on mice**



(c) S.Carrara, EPFL (Switzerland)







Tests of inflammation induced in mouse by the implanted Bio-Nano-Sensor and the wear remote system

(c) S.Carrara, EPFL (Switzerland)



- P450 Cytochromes are required to detect Exogenous metabolites (Drugs)
- Oxidases are required to detect endogenous metabolites (bio-markers)
- Carbon Nanotubes are definitely required to improve sensitivity of molecular detection
- Dedicated CMOS design is required for a reliable electrochemical sensing of human metabolites
- Remote Powering is required for minimally invasive Under-the-Skin Devices
- Telemetry of human metabolism on our smartphones is actually feasible

## Conclusion: Learning to Hate Big Tech



By TIME, May 14, 2012

#### By being more corporate and less cool, IT firms are becoming as popular as banks

(c) S.Carrara, EPFL (Switzerland)

## Thanks to:

- Andrea Cavallini
- Camilla Bai-Rossi
- Cristina Boero
- Sara Ghoreishizadeh
- Daniel Torre
- Daniela De Venuto
- Irene Taurino
- Arnaud Magrez
- Dino Giuseppe Albini
- Victor Erokhin
- Jacopo Olivo
- Onur Kazanç
- Enver Gürhan Kilinç
- Catherine Dehollain
- Maaike Op de Beeck
- Giovanni De Micheli



# Thank you for your attention!



#### Coordinates

Sandro Carrara Ph.D EPFL - Swiss Federal Institute of Technology in Lausanne - Switzerland

Web: http://si2.epfl.ch/~scarrara/ email: sandro.carrara@epfl.ch